1 Select the row of the table that shows the correct SI base units for force and work done.

	Force	Work done
$\square \mathbf{A}$	$\mathrm{kg} \mathrm{m}^{2} \mathrm{~s}^{-2}$	$\mathrm{~kg} \mathrm{~m}^{3} \mathrm{~s}^{-2}$
$\square \mathbf{B}$	$\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$	$\mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$
$\square \mathbf{C}$	$\mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}$	$\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$
$\square \mathbf{D}$	$\mathrm{~kg} \mathrm{~m} \mathrm{~s}^{-2}$	$\mathrm{~kg} \mathrm{~m}^{3} \mathrm{~s}^{-2}$

(Total for Question = 1 mark)

2 The graph shows how potential difference V varies with current I for a circuit component.

Which of the following could be the circuit component?
\square A copper wire
B filament lampC fixed resistor
D thermistor
(Total for Question 1 mark)

3 An electric torch uses two 1.5 V cells. The torch bulb is marked $2.4 \mathrm{~V}, 270 \mathrm{~mA}$. What is the resistance of the torch bulb?A 0.81ΩB 0.65ΩC 8.9ΩD 11Ω
(Total for Question = 1 mark)

4 All electrical components have resistance.
In which of the following situations would the resistance of the stated component not increase?A Increasing the current through a filament lamp.B Increasing the temperature of a metal wire.C Increasing the temperature of a negative temperature coefficient thermistor.D Reversing the direction of a diode in forward bias in a circuit.
(Total for Question = 1 mark)

5 Which combination of resistors has the smallest total resistance?

$\square \quad \mathbf{A}$
$\square \quad B$
$\square \quad$ C
$\square \quad$ D
(Total for Question 1 mark)

6 The current in a wire
$\square \quad$ A depends only on the potential difference applied.
$\square \quad$ B depends only on the resistance of the wire.C depends on both the potential difference and the resistance of the wire.D does not depend on the potential difference or the resistance of the wire.
(Total for Question = 1 mark)

7 The graph shows the relationship between potential difference V and current I for a fixed 20Ω resistor and a filament lamp.

The resistor and lamp are placed in series with a 9 V battery of negligible internal resistance. The current in the circuit isA 0.1 AB 0.2 AC 0.3 A
D 0.4 A
(Total for Question = 1 mark)

8 Two identical resistors connected in series have a total resistance of 8Ω.
The same two resistors when connected in parallel have a total resistance ofA 0.5ΩB 2ΩC 4ΩD 8Ω
(Total for Question = 1 mark)

9 A steady potential difference is applied across a variable resistor that is kept at a constant temperature.

A

B

C

D

The graph which represents the relationship between the resistance R of the variable resistor and the current I through it isABCD
(Total for Question 1 mark)

10 The graph shows how the current I varies with potential difference V for an electrical component.

Which row of the table gives the resistance of the component at V_{2} and describes how the resistance changes from V_{1} to V_{2} ?

		Resistance at $\boldsymbol{V}_{\mathbf{2}}$	Change in resistance from $\boldsymbol{V}_{\mathbf{1}}$ to $\boldsymbol{V}_{\mathbf{2}}$
\square	\mathbf{A}	$\frac{V_{2} V_{1}}{I_{2} I_{1}}$	increases
\square	\mathbf{B}	$\frac{V_{2} V_{1}}{I_{2} I_{1}}$	decreases
\square	\mathbf{C}	$\frac{V_{2}}{I_{2}}$	increases
\square	\mathbf{D}	$\frac{V_{2}}{I_{2}}$	decreases
\square			

(Total for Question 1 mark)

11 The diagram shows a resistor network.

The total resistance between points X and Y isA 0.25ΩB 1.0ΩC 4.0ΩD 16Ω
(Total for Question = 1 mark)

12 Which one of the following graphs correctly shows the relationship between potential difference (V) and current (I) for a filament lamp?

A

B

C
D

$\square \quad$ A

BCD(Total for Question = 1 mark)

13 The diagram shows a combination of three identical resistors.

W hat is the combined resistance between P and Q ?
A 4ΩB 6Ω
C 8Ω
D 12Ω
(Total for Question = 1 mark)

14 When a semiconductor has its temperature increased from room temperature, its resistance usually decreases because

A the electrons are moving faster.
B the lattice atoms vibrate with greater amplitude.
C the lattice atoms vibrate with smaller amplitude.
D the number of charge carriers per unit volume increases.
(Total for Question = 1 mark)

15 The resistance of a negative temperature coefficient thermistor
$\square \quad$ A becomes zero above a certain temperature.B decreases as the temperature decreases.C increases as the temperature decreases.D is constant at temperatures below $0^{\circ} \mathrm{C}$.

